
hr. .I. Hear Moss Transfer. Vol. 16, pp. 1037-1043. Pergamon Press 1973. Printed in Great Britain 

INWARD SPHERICAL SOLIDIFICATION-SOLUTION BY 
THE METHOD OF STRAINED COORDINATES 

R. I. PEDROSO* 

Philips Laboratories, Briarcliff Manor. New York, U.S.A. 

and 

G. A. DOMOTO 

Department of Mechanical Engineering, Columbia University, New York, New York, U.S.A. 

(Receioed 21 July 1972) 

Abstract-The method of strained coordinates is applied to obtain a perturbation solution for spherical 
solidification of a saturated liquid. The solution is uniformly valid and can be applied as the freezing front 
approaches the center where the regular-perturbation solution is found to diverge. The wall temperature 
is assumed constant; however. the technique should also be applicable to other types of boundary con- 
ditions. The properties of the solidified material are assumed to bc constant. A non-linear transformation 
is applied to the sequence of partial sums in the perturbation solution to increase its range of applicability. 

The solutions obtained are compared with numerical results. 

NOMENCLATURE 

specific heat of the solidified 
thermal conductivity of the 
material ; 

material ; 
solidified 

latent heat of fusion: 
radial position in the solidified material ; 
radial position of the freezing front ; 
radial position of the fixed (spherical) 
boundary ; 
temperature distribution in the solidi- 
tied material ; 
freezing temperature ; 
temperature at the fixed (spherical) 
boundary ; 
time ; 
thermal diffusivity of the solidified 
material, k/(pc) ; 
density of the solidified material. 

Dimensionless quantities 
r, normalized position in the solidified 

material, RIR, ; 
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normalized freezing-front position, 

R,!R, ; 
normalized temperature distribution 
in the solidified material, (T - To)/ 

(T/ - T,); 
coefficient of si in the power-series 
expansion of u ; 
perturbation physical parameter, 
c(T” - Q/L; 
coefficient of si in the power-series 
expansion of I ; 
normalized time, k(Tf - T,)tj(pLRg) ; 

independent variables introduced in 
equations (6). 

INTRODUCTION 

IN A PRBVIOUS paper [l], a regular parameter- 
perturbation technique was introduced for 
outward and partial inward spherical solidifi- 
cation. The boundary conditions were the same 
as those presently considered in this paper. The 
solution was found to diverge for inward 
solidification as the freezing front approached 
the center of the sphere. The series solution was 
then modified to insure convergence; however, 
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the temperature distributions so obtained had 
a point of singularity at the center and hence 
were inaccurate in its vicinity. Numerical solu- 
tions of the same problem were obtained by 
Tao [2] who, for inward solidification, presented 
the results in graphical form. These results were 
then tabulated in [3]. 

The obiective of this paper is to introduce a 
parameter-perturbation technique which yields 
a solution uniformly valid for spherical solidifi- 
cation. Although the method of strained co- 
ordinates is not recommended [4] for parabolic 
differential equations, it will be used here and 
shown to yield good solutions. The non-linear 
transformation of Shanks [5] will be applied 
to the sequence of partial sums in the perturba- 
tion solution to considerably increase its range 
of applicability. 

The solutions obtained will apply for outward 
as well as inward spherical solidification. How- 
ever, the regular-perturbation solution of [l] is 
simpler and more straightforward, therefore, it 
should be used in the case of outward solidifi- 
cation. The freezing temperature and all other 
properties will be assumed constant. Further, 
the liquid will be assumed to be at the freezing 
temperature. The wall temperature will be 
assumed to be constant. For melting problems, 
the solutions presented will apply if the melt is 
assumed to remain stationary. The perturbation 
technique introduced in this paper should also 
be applicable to other types of boundary con- 
ditions and in the cylindrical geometry. 

ANALYSIS 

Consider the one-dimensional spherical con- 
figuration shown in Fig. 1. The heat flow within 
the frozen spherical shell is governed by the 
transient heat conduction equation. For spherical 
symmetry and with constant properties, this 

has the form 

aT a tP(RT) 
-=_ 
at R aR2 

(1) 

The constant temperatures at the fixed boundary, 

TEMPERATURE 
DISTRIBUTION 

FREEZING-FRONT 

SHELL 

FIG. I. One-dimensional spherical geometry shown for the 
case of inward solidification. 

T,, and at the freezing front, Tr, yield the 
boundary conditions : 

T(t, R = R,) = To, T(t, R = R,f) = Tf. (2) 

An energy balance at the interface, with the 
temperature of the liquid assumed constant at 
the freezing temperature, yields 

dRr k aT - 
dt=pL aR R=Rf’ 

(3) 

Define the dimensionless parameter, s, tempera- 
ture, u, radial position, r, freezing-front position, 
r,r, and time, T, as 

Tr - T, T - To R 
FCC---- 

L ’ u=T,-T,’ 
r=- 

RO 

Rr r,r = L ) 

RO 
r=k Tf - T, 

PLR: 
(4) 

The physical parameter, s, is a (qualitative) 
measure of the sensible heat in the solidified 
material relative to the latent heat of fusion. 
Combine equations (lH4) and change variables 
(t, r) + (rf, r) to obtain the normalized form of 
the boundary-value problem : 

au aui 

u(rI, r = 1) = 0, u(r,r, r = r,l) = 1 (5) 

dr aa .(-- 
dz & T=,,’ 
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The regular-perturbation solution to the system 
of equations (5) was obtained in [l] and is 
presented in the Appendix. This solution is 
clearly divergent (for any non-zero value of E) 
as the freezing front approaches the center of 
the sphere. 

Equations (5) will now be solved by straining 
the coordinates rf and r. Define two new 
independent variables : 

4 = $4rs, 4 Y = &(r,. rf) (6) 

and expand the variables r and r/ as 

r = q5 + E~J~(!P, 4) + ezo2(Y, $J) + . . . 

r,[ = Y + HJ,(Y, Y) + 2o,(Y, Y) + . . . (7) 

where the functions a,(+, Y) have been intro- 
duced and will be determined in the solution. 
The normalized temperature distribution taken 
as a function of the variables 4, Y and of the 
parameter E can be expanded as 

The following conditions are established in 
order to satisfy the boundary condition at the 
fixed wall and the initial freezing-front position : 

lim ai( Y, &) = lim oi(Y, Y) = 0. (9) 
,- 1 Y-1 

Change variables (rp r) -_, (Y, &) in equations (5) 
and expand in terms oft: according to equations 
(7) and (8), to obtain for the zeroth-order 
boundary-value problem : 

The first-order boundary-value problem can 
then be written as 

_!?f@ (#)u,+La’ =- l-4 ( 1-Y 4 > Y(1 - Y)3 

u,(Y,f$ = 1) = ur(Y,4 = Y) = 0. (12) 

It is desired, if possible, to choose the function 
0, such that the first-order term in the tempera- 
ture distribution, ur, is identically equal to zero. 
The simplest form of g’l to accomplish this is 

4(1 - 4)” 
g1 = - f#(l _ tp)Z ’ 

(13) 

The second-order boundary-value problem then 
becomes 

+ (4 + 4Y - 15#(1 - 4)3 

6Y3(1 - Y)’ 
(14) 

u2(Y,4= l)=u,(Y,($= Y)=O. 

The simplest function o’2 to make u2 identically 
zero is 

1 

c2=- [ 

1 - 4Y + 104 (1 - (6)X 

- 9 120 Y(1 1 - Y)’ 

441 - 4J3 x Y3(1 - Y)‘. 
(15) 

The second equation in (7) can now be combined 
with equations (13) and (15); yielding for the 
normalized freezing-front position : 

1-Y 
a2(&J o r,f = Y - E ___ 

6Y +s 

2 (22Y-3)(1- Y) 

360Y3 ’ 
(16) 

-@jr= 
(10) 

u,(Y, 4 = 1) = 0, u,(Y, 4 = Y) = 1 
Express the energy balance at the freezing front 
in terms of 4 and Y to obtain in expanded form : 

which can be solved to obtain 

(w) - 1 
u” = (l/Y) - 1. 

dz 1 
-_= 
dY au0 

(11) ZJ g=y# 
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which can be shown to simplify to 

Z= 
3(1 - Y)2 - 2(1 - Y)3 + E (1 - Y)2 

6 3 

- & 
2 (1 - w 

180Y2 * (18) 

The solutions presented above are implicit 
relations for the temperature distribution, u, 
and the freezing time, r, in terms of the variables 
r and rf. The freezing-time solution including 
two terms can easily be expressed explicitly in 
terms of r,[ if 

Y= 
6r, - E + J[(6rf - E)~ + 24~1 

12 
(19) 

is substituted into the first two terms in equation 

(18). 
The first three terms of the perturbation 

solution have been presented above. It should be 
possible to calculate more terms in the solution ; 
however, this procedure becomes algebraically 
lengthy. The terms so far calculated can yield, 
if properly used, a large amount of information. 
In order to accomplish this, the non-linear 
transformations of Shanks [5] can be used. The 
transformations become most useful when the 
perturbation series is slowly convergent or 
divergent. Since only the first three terms have 
been calculated in the above solution, it is 
possible to apply but the simplest of these 
transformations. For the normalized freezing- 
front position in equations (7), the result is 

which can be simplified to 

I* _ y 60Y2 + ~(32Y - 13) 
r- 60YZ + s(22Y - 3) ’ 

(21) 

Application of the same transformation to the 
series for the freezing time, equation (18). yields 

_c*= 
[60Yz~l+2Y)~~(l+2Y+120Y~)~(l-Y)z 

6(60Y2+&) - 

(22) 

The implicit relation between t-7 and r* is given 
by the above two equations. Application of the 
same transformation to the normalized position 
in equation (7) gives 

y+lE l_(1-+)2t13-12Y+204) 

r*=4 3 [ 4OY(l -Y)* 1 

y + 2 E _ 311 lW)(l 

- 4y + - 

#)2 3 40 Y(1 - Y)2 I 

(23) 
Combining equations (11) (21) and (23) one 
obtains an implicit solution for the normalized 
temperature distribution in terms of r7 and I*. 
Equation (21) can easily be inverted at the instant 
of freezing to the center, yielding 

y(rlfi = 0) 2= J(fj4E2 + 1954 - 8E 
30 . 

RESULTS AND DISCUSSION 

Results from the above solutions have been 
presented graphically in Figs. 2-5. The nor- 
malized temperature distribution, equation (1 l), 
at the instant offreezing to the center is compared 
in Fig. 2 with the numerical results of Tao [3]. 
Values of @1 and 05 were assigned to the 
perturbation parameter, E. The difference, for 
E = 0.1, between the perturbation and numerical 
solutions, we believe results from errors intro- 
duced in the numerical integration of the 
boundary-value problem as the freezing front 
approaches the center. 

The freezing times including two and three 
terms in the series solution, equation (18) are 
shown in Fig. 3 for values of E of 01, 05 and 1. 
Once again, there exists some disagreement for 
E = @I between the perturbation and numerical 
solutions. The ~rturbation solution for this 
small value of E should be accurate. For E = 1 
there is a large difference from the first to the 
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-u. FOR r’++Eq ($‘,4i 

- --- uO FOR r’++Eq ($,+)+&2 t$,+) 

x NUMERICAL RESULTS OF TOO [31 

NORMALIZED POSITION, r = R 
RO 

NORMALIZED PoSltlO((. r’= h 
RO 

FIG. 2. Normalized temperature distributions at the instant 
of freezing to the centre (r, = 0) and numerical results of 

Tao [3]. 

FIG. 4. Normalized temperature distributions after non- 
linear transformation of Shanks 15) at the instant of freering 

to the center (rr = 0) and numerical results of Tao [3]. 

- t-FOR ‘f=$+cu, (JIG#, 

---- t-FOR rf=++q (@#It 
EZU* tJI*JI, 

X NUMERICAL RESULTS OF 

NORMALIZED FREEZING -fRDUT POSITION, ‘,= !$ 
0 

FIG. 3. Normalized freezing-time, solutions for inward 
solidification and numerical results of Tao 131. . 1 

I 

x NUMERICAL RESULTS Of TOO t33 

0 .2 .4 .a I 

2 .5 r 

$9 “p” x NUMERICAL RESULTS OF Too [3] 

c -) 
zp, 

.* 

NORYAL~ZED FREEZING - FRONT P~SITIDN. r; = Y- 
=0 

FIG. 5. Normalized freezing-time solutions after non-linear 
transformation of Shanks 15) for inward solidification and 

numerical results of Tao 131. 
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second-order perturbation solution : hence, the 
series will be either slowly convergent or 
divergent. It is likely that the latter condition 
exists, since the slope of the second-order solu- 
tion becomes positive for freezing-front positions 
near the center. 

Figures 4 and 5 show the non-linear trans- 
formed solutions for various values of E up to 
F = 3. The difference between the perturbation 
solution for the temperature distribution and 
[3] becomes large for E = 2 and 3. It might seem 
logical to conclude that the non-linear trans- 
formed perturbation solution is in error for 
these moderate values of E. However, the non- 
linear transformed freezing-time solution is in 
good agreement (see Fig. 5), even for E = 3, with 
[3]. Note that the difference between our per- 
turbation solution and the results of Tao [3], for 
the temperature distribution for r,y = 0, exists 
even for E = 0.1; in which case the perturbation 
solution seems to be rapidly convergent. There- 
fore, the possibility remains that large errors are 
introduced in the numerical integration of [3] 
as the freezing front approaches the center, 
resulting at this instant in erroneous temperature 
distributions. Since close to the center freezing 
rates are relatively high, this error should have 
a small effect on the freezing-time solutions. 

1. 

2. 

3. 

4. 

5. 
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APPENDIX 
Assume a solution to equations (5) of the form: 

u(rp r: d = uO(rr, r) + eu,(rr. r) + .Gu2(rp r) + (A.1) 

Substitution and equating coefficients of equal powers of E 

yields for the temperature distribution: 

and for the freering-time solution : 

3(r, - 1)’ + 
.T-- 

2(r, - 1)3 + (r, - 1)’ 1 

6 6 45 

(A.3) 

SOLIDIFICATION SPHERIQUE VERS L’INTERIEUR-SOLUTION PAR LA METHODE DES 
COORDONNEES DEFORMEES. 

R&man applique la mtthode des coordonntes dCformQs pour obtenir une solution de perturbation 
pour la solidification sphtrique d’un liquide saturC. La solution est uniformkment valide et peut &tre 
appliqu&e quand le front de solidification approche le centre oti la solution de perturbation regulitre 
diverge. La temptrature est suppos& constante & la paroi; cependant, la technique devrait aussi gtre 
applicable B d’autres types de conditions aux limites. Les proprittb du mat&au solidi% sont suppostes 
constantes. On a appliquk une transformation non IinCaire rl la suite de sommes partielles dans Ia solution 
de perturbation pour augmenter son domaine d’applicabilit8. Les solutions obtenues sont comparees 

aux rtsultats nmnCrioues. 
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KUGELFdRMIGE VERFESTIGUNG, L&SUNG MIT DER METHODE TRANSFORMIERTER 
KOORDINATEN 

Zmammenfaas~g-Die Methode der transformierten Koodinaten wurde angewandt, urn eine Stiirungs- 
liisunp. fiir kuaelfdrtniae Verfestiauna einer aesiittiaten Fhissigkeit zu erhalten. Die Liisune. ist tiberall 
giiltig-und ka& such benutzt werden,-wenn &h die Gefrierfrom dem Mittelpunkt nlihert, wo‘hie reguliire 
Stiirungsliisung divergiert. 

Die Wandtemperatur ist konstant vorausgesetzt, jedoch kijnnte die Methode such ftir andere Kanal- 
hedingungen anwendbar sein. 

Konstante Stoffeigenschaften des verfestigten Materials werden vorausgesetzt. Eine nichtlineare 
Transformation wurde auf die Folge von Teilsummen in der Stromungsliisung angewandt, urn die 

Giiltigkeit zu erweitern. Die so erhaltenen Losungen wurden mit numerischen Ergebnissen verglichen. 

PEIIIEHHE BAjJA=IH 0 BATBEPAEBAHBB C@EPbI METOAOM 
AE@OPMMPOBAHHbIX KOOPAHHAT 

AIIHOT~~HJI-JQIK nonyqeam pememrl 3aRaw 0 3aTBepnesamn HacbIueHHoti WHAKOCTE~ 

C@epWIeCKOti l$OpMbI lICIIOJIb3yeTCR MeTOn Ae@OpMHpOBaHHbIX KOOpaMHaT. Pemerine 
CIIpaBeJJJIHBO AJIH BCei o6nacTri H MOX(eT IIpPIMeHHTbCH HJIH CJIyYaJi ABWKeHHR @pOHTa 

3aTBepAeBaHHH K UeHTpy, r,t(e o6brsaoe B03MyWeHHOe peIIIeHI4e RaeT IICKalKeHLIR. Temepa- 

Typa CTeHKIiIIOJIaI.aeTCH IIOCTOfIHHOfi. OAHaKO 3TOT MeTOg MOH(H0 MCIIOJIb30BaTb TaKFKe UpPi 

FpaHRYHbIX yCJIOBElRX )JpyI-"X TEIIIOB. Cnoicrna 3aTBepAeBaromero hiaTepBana C’YBTaroTcn 
BOCTOnHHbIMM. Ann p3CmBpeHBB o6nacTn npMMeHeHBR BO3MymeHHOl’O peIBeHA3 BCnOJIb3- 
J’CTCB HeJIBHetiHOC npeO6p330BaHBe BOCJIeAOBaTCJIbHOCTB VaCTRYHbIX CYMM. nOJIyqeHHbIe 

peIIIeHHR CpaBHHBaI0TCfI C '4llCJIeHHbIMR pe3yJIbTaTaMA. 


