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Abstract—The method of strained coordinates is applied to obtain a perturbation solution for spherical
solidification of a saturated liquid. The solution is uniformly valid and can be applied as the freezing front
approaches the center where the regular-perturbation solution is found to diverge. The wall temperature
is assumed constant; however, the technique should also be applicable to other types of boundary con-
ditions. The properties of the solidified material are assumed to be constant. A non-linear transformation
is applied to the sequence of partial sums in the perturbation solution to increase its range of applicability.

The solutions obtained are compared with numerical results.

NOMENCLATURE e normalized freezing-front position,
specific heat of the solidified material ; R/Ry;
thermal conductivity of the solidified u, normalized temperature distribution
material ; in the solidified material, (T — T)/
latent heat of fusion: (T, — Ty): '
radial position in the solidified material ; u,  coefficient of & in the power-series
radial position of the freezing front; expansion of u;
radial position of the fixed (spherical) ) perturbation  physical  parameter,
boundary ; oT, — Ty)/L; '
temperature distribution in the solidi- 0  coefficient of ¢ in the power-series
fied material ; expansion of r;
freezing temperature ; T, normalized time, k(T, — To)t/(pLR3);
temperature at the fixed (spherical) ¢.¥, independent variables introduced in
boundary : equations (6).
time;

thermal diffusivity of the solidified
material, k/(pc);
density of the solidified material.

Dimensionless quantities

r,

normalized position in the solidified
material, R/Ry;
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INTRODUCTION

IN A PREVIOUS paper [1], a regular parameter-
perturbation technique was introduced for
outward and partial inward spherical solidifi-
cation. The boundary conditions were the same
as those presently considered in this paper. The
solution was found to diverge for inward
solidification as the freezing front approached
the center of the sphere. The series solution was
then modified to insure convergence; however,
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the temperature distributions so obtained had
a point of singularity at the center and hence
were inaccurate in its vicinity. Numerical solu-
tions of the same problem were obtained by
Tao [2] who, for inward solidification, presented
the results in graphical form. These results were
then tabulated in [3].

The objective of this paper is to introduce a
parameter-perturbation technique which yields
a solution uniformly valid for spherical solidifi-
cation. Although the method of strained co-
ordinates is not recommended [4] for parabolic
differential equations, it will be used here and
shown to yield good solutions. The non-linear
transformation of Shanks [5] will be applied
to the sequence of partial sums in the perturba-
tion solution to considerably increase its range
of applicability.

The solutions obtained will apply for outward
as well as inward spherical solidification. How-
ever, the regular-perturbation solution of [1] is
simpler and more straightforward, therefore, it
should be used in the case of outward solidifi-
cation. The freezing temperature and all other
properties will be assumed constant. Further,
the liquid will be assumed to be at the freezing
temperature. The wall temperature will be
assumed to be constant. For melting problems,
the solutions presented will apply if the melt is
assumed to remain stationary. The perturbation
technique introduced in this paper should also
be applicable to other types of boundary con-
ditions and in the cylindrical geometry.

ANALYSIS

Consider the one-dimensional spherical con-
figuration shown in Fig, 1. The heat flow within
the frozen spherical shell is governed by the
transient heat conduction equation. For spherical
symmetry and with constant properties, this
has the form

0T a &*RT)

Rl 1
ot R OR? )

The constant temperatures at the fixed boundary,
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FiG. 1. One-dimensional spherical geometry shown for the
case of inward solidification.

Ty, and at the freezing front, T, yield the
boundary conditions:

Tt,R=R)=T,, TELR=R)=T,. (2)

An energy balance at the interface, with the
temperature of the liquid assumed constant at
the freezing temperature, yields

dR, k T

dt " pL R |y g, ®)

Define the dimensionless parameter, &, tempera-
ture, u, radial position, r, freezing-front position,
rr, and time, 7, as

T, — T T - T, R
&= c— , u= s P=
L T, - T, R,
R T, — T
rp==2, =k-L° (4)
’ R, PLRG

The physical parameter, g is a (qualitative)
measure of the sensible heat in the solidified
material relative to the latent heat of fusion.
Combine equations (1}4) and change variables
(t,r) = (r;,7) to obtain the normalized form of
the boundary-value problem:

w1
orp orl, ., r or
ury,r=1)=0, urp,r=r;) =1 (5)
dr, _ 0
dt — or{,_,



INWARD SPHERICAL SOLIDIFICATION

The regular-perturbation solution to the system
of equations (5) was obtained in [1] and is
presented in the Appendix. This solution is
clearly divergent (for any non-zero value of ¢)
as the freezing front approaches the center of
the sphere.

Equations (5) will now be solved by straining
the coordinates r, and r. Define two new
independent variables :

¢ = ¢(rfa r)’ W = ¢(r5a rf) (6)
and expand the variables r and r, as
r=¢+¢0,(¥ ¢)+ 0y (¥,¢) + ...

()

rr=9%+e0,(P,P) + e0,(P, V) + ...

where the functions o,(¢, V) have been intro-
duced and will be determined in the solution.
The normalized temperature distribution taken
as a function of the variables ¢, ¥ and of the
parameter ¢ can be expanded as

u(q’, ¢y 8) = uO(lP’ ¢) + eul(‘I’, ¢)

+ Euy(P,9)+ ... (8)
The following condiﬁons are established in
order to satisfy the boundary condition at the
fixed wall and the initial freezing-front position:

lim 0%, ¢) = lim (¥, ¥) = 0.

¢—1 P 1

)

Change variables (r,r) - (¥, ¢) in equations (5)
and expand in terms of ¢ according to equations
(7) and (8), to obtain for the zeroth-order
boundary-value problem:

62(¢u0) -0
o> (10)
u(?,0=1=0, u(¥,¢=¥)=1
which can be solved to obtain
(1/¢) — 1 (11)

“©= w1
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The first-order boundary-value problem can
then be written as

0? ¥ g 1-¢
W<¢”‘+1—WE>='W(1—W)3

u(P,¢=1)=u(¥,¢ =¥ =0. (12)

It is desired, if possible, to choose the function
o, such that the first-order term in the tempera-
ture distribution, u,, is identically equal to zero.
The simplest form of o, to accomplish this is

o(1 — ¢)°
g, = —-61’—2(1—_‘—@ (13)

The second-order boundary-value problem then
becomes

2 Y o)\ 2 1-¢
W(¢“2+m$>—§w—2(‘1‘_7)3
4 + 4% — 15¢)(1 — ¢)°
6931 — P)°
uZ(lI”d):l):uZ(qla(b:ql):O'

(14)

The simplest function o, to make u, identically
zero is

[1 1 — 4% + 10¢ (1—¢)2]
0y == — 3

9 120 Ya-Y)
o(1 — ¢)°
wiowy P

The second equation in (7) can now be combined

with equations (13) and (15); yielding for the

normalized freezing-front position:

1-¥ + e (22¥ -3)(1-P)
34 36073

rr=%—c¢ (16)

Express the energy balance at the freezing front
in terms of ¢ and ¥ to obtain in expanded form:

,(_il _ 1 L +e do (P, ¥)
dy — @_0 dy o=
o¢

9,

o¢

=¥
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Sz[daz('l’, ¥) o,
dw 06 [s-v
do,(¥, ) 0o,
T 3 |yes + ... (1n

which can be shown to simplify to
(1 -9 - 211 -9 (1 — ¥y
T == + £

6 3
{1 — vy
T A

The solutions presented above are implicit
relations for the temperature distribution, u,
and the freezing time, 7, in terms of the variables
r and r,. The freezing-time solution including
two terms can easily be expressed explicitly in
terms of r if

6r, — ¢ + J[(6r; — &) + 24¢)
12

¥ = (19)
is substituted into the first two terms in equation
(18).

The first three terms of the perturbation
solution have been presented above. It should be
possible to calculate more terms in the solution;
however, this procedure becomes algebraically
lengthy. The terms so far calculated can yield,
if properly used, a large amount of information.
In order to accomplish this, the non-linear
transformations of Shanks [5] can be used. The
transformations become most useful when the
perturbation series is slowly convergent or
divergent. Since only the first three terms have
been calculated in the above solution, it is
possible to apply but the simplest of these
transformations. For the normalized freezing-
front position in equations (7), the result is

r,FZ'I’al(‘I’, V)—e[VPa, (¥, P)—-oi(¥, P)]

2
al(q’: lIl)_‘&aZ(?’s .II) ( O)
which can be simplified to
2 —
60%¥?2 + &(32¥ — 13) 1)

T = Y 0w § 22¥ —3)
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Application of the same transformation to the
series for the freezing time, equation (18), yields

_ [60P*(1+2%)+e(14+2¥+12099)]1(1 - P)°
- 6(60%2 +¢) ’

*

(22)

The implicit relation between r} and * is given
by the above two equations. Application of the
same transformation to the normalized position
in equation (7) gives

2 [ (1=¢)(13— 12% +20¢)
r*=¢w+§6 [ T 0w - PP ]
2 3 (1= 4% + 1061 — ¢)?
q’+38{1'&6 V(i — 9y ]

(23)
Combining equations (11), (21) and (23), one
obtains an implicit solution for the normalized
temperature distribution in terms of r¥ and r*.
Equation (21) can easily be inverted at the instant
of freezing to the center, yielding

_J(64¢% + 195¢) — 8¢
B 30 )

RESULTS AND DISCUSSION

Results from the above solutions have been
presented graphically in Figs. 2-5. The nor-
malized temperature distribution, equation (11),
at the instant of freezing to the centeris compared
in Fig. 2 with the numerical results of Tao [3].
Values of 01 and 05 were assigned to the
perturbation parameter, ¢ The difference, for
g = 0-1, between the perturbation and numerical
solutions, we believe results from errors intro-
duced in the numerical integration of the
boundary-value problem as the freezing front
approaches the center.

The freezing times including two and three
terms in the series solution, equation (18), are
shown in Fig. 3 for values of & of 0+1, 0-5 and 1.
Once again, there exists some disagreement for
¢ = O-1 between the perturbation and numerical
solutions. The perturbation solution for this
small value of ¢ should be accurate. For ¢ = |
there is a large difference from the first to the

Yt =0)
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second-order perturbation solution: hence, the
series will be either slowly convergent or
divergent. It is likely that the latter condition
exists, since the slope of the second-order solu-
tion becomes positive for freezing-front positions
near the center.

Figures 4 and 5 show the non-linear trans-
formed solutions for various values of ¢ up to
¢ = 3. The difference between the perturbation
solution for the temperature distribution and
[3] becomes large for ¢ = 2 and 3. It might seem
logical to conclude that the non-linear trans-
formed perturbation solution is in error for
these moderate values of &. However, the non-
linear transformed freezing-time solution is in
good agreement (see Fig. 5), even for ¢ = 3, with
{3]. Note that the difference between our per-
turbation solution and the results of Tao [3], for
the temperature distribution for r, = 0, exists
even for ¢ = 0-1; in which case the perturbation
solution seems to be rapidly convergent. There-
fore, the possibility remains that large errors are
introduced in the numerical integration of [3]
as the freezing front approaches the center,
resulting at this instant in erroneous temperature
distributions. Since close to the center freezing
rates are relatively high, this error should have
a small effect on the freezing-time solutions.

PEDROSO and G. A. DOMOTO

REFERENCES

1. R.I. PEDROSO and G. A. DoMoTO, Perturbation solutions
for spherical solidification of saturated liquids, to be
published in the J. Heat Transfer.

2. L. C. Tao, Generalized numerical solution of freezing a
saturated liquid in cylinders and spheres, 4.1.Ch.E.JI 13,
165 (1967).

3. L. C. Tao, Tabulation of numerical solutions of freezing
a saturated liquid in a cylinder or a sphere, document
9159, American Documentation Institute, Photoduplica-
tion Service, Library of Congress, Washington 25, D.C.

4. M. VaN DyYKE, Perturbation Methods in Fluid Mechanics.
Academic Press, New York (1964).

S. D. SHANKS. Non-linear transformations of divergent and
slowly convergent sequences, J. Math. Phys. 34, 1-42
(1955).

APPENDIX
Assume a solution to equations (5) of the form:
wrprie) = uglrpr) + euy(rpr) + efuylrpr) + ... (A1)

Substitution and equating coefficients of equal powers of ¢
yields for the temperature distribution:

u_l_’_l1 AN I 11 N,
uo— 6 rr " rvz, 36 -<r_f> "

“

. r, — 1 ) AN A A2
120 , Uy r'% (A2)
and for the freezing-time solution:
rp = D + 20r, — 1)° - 17 1
17=(rf )+ 2, )+(r, )8~__
6 6 45
— 1)
VR i S (A3)

Fr

SOLIDIFICATION SPHERIQUE VERS L'INTERIEUR—SOLUTION PAR LA METHODE DES
COORDONNEES DEFORMEES.

Résumé—On applique la méthode des coordonnées déformées pour obtenir une solution de perturbation
pour la solidification sphérique d'un liquide saturé. La solution est uniformément valide et peut étre
appliquée quand le front de solidification approche le centre ol la solution de perturbation réguliére
diverge. La température est supposée constante a la paroi; cependant, la technique devrait aussi étre
applicable a d’autres types de conditions aux limites. Les propriétés du matériau solidifié sont supposées
constantes. On a appliqué une transformation non linéaire 4 la suite de sommes partielles dans la solution
de perturbation pour augmenter son domaine d’applicabilité. Les solutions obtenues sont comparées
aux résultats nnmériaues.
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KUGELFORMIGE VERFESTIGUNG, LOSUNG MIT DER METHODE TRANSFORMIERTER
KOORDINATEN

Zusammenfassung—Die Methode der transformierten Koodinaten wurde angewandt, um eine Stérungs-
16sung fiir kugelformige Verfestigung einer geséttigten Fliissigkeit zu erhalten. Die Losung ist iiberall
giiltig und kann auch benutzt werden, wenn sich die Gefrierfront dem Mittelpunkt nahert, wo die regulére
Stérungslosung divergiert.

Die Wandtemperatur ist konstant vorausgesetzt, jedoch kénnte die Methode auch fiir andere Kanal-
bedingungen anwendbar sein.

Konstante Stoffeigenschaften des verfestigten Materials werden vorausgesetzt. Eine nichtlineare
Transformation wurde auf die Folge von Teilsummen in der Strémungslosung angewandt, um die

Giiltigkeit zu erweitern. Die so erhaltenen Losungen wurden mit numerischen Ergebnissen verglichen.

PEIMIEHHE 3AKAYH O 3ATBEPOEBAHUUN COEPBI METOI0OM
AEOOPMUPOBAHHBIX HOOPOWHAT

AnHoTanua— /{717 mONyuYeHUA pellleHHA 3a7a4YM O 3aTBepIeBAHMU HACHIIIEHHON IKUAKOCTH
chepuueckoil GopmMbl HCHONb3yeTCHA MeToA AePOpMUPOBAHHHIX KOOpAMHAT., PelneHue
COpAaBeJIMBO [ Beell 001acTM M MOKeT NPUMEHATBCA A ciryvyad ABMKeHUA (poHTa
3aTBEPAEBAHUA K IEHTPY, rAe o0bYHOe BOBMYINEHHOE pellleHue faeT MckamkeHus. Temmepa-
TYypa CTEHKH NOJIAraeTcA MOCTOAHHON. OJHAKO 9TOT METOJ MOKHO MCIIONLE30BATh TaKie Mpu
IPAHMYHBIX YCIOBHAX Apyrux TumoB. CBOHCTBA 3aTBepAEBAOILEr0 MATEPHAIA CYATAITCH
NOCTOAHHBIMU. [[1A paciuMpeHnA O6JIACTH NPHMEHEHNA BO3MYUIEHHOIO pelieHMA MCHOJIb3-
veTcs HesMHeliHOe NpeoOpasoBaHue IMO0CAEN0BATeNbHOCTH 4acTHYHBIX cyMM. [lomydeHHble
pellIeHNA CPABHUBAIOTCA C YNCIEHHBIMH Pe3VIbTaTaMu,
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